BlueKai是国外一家做数据买卖的公司,没错,就是315晚上上曝光的用户跟踪,买卖数据的生意。在对隐私保护更注重的美国,BlueKai生存的很好,没有倒掉,也说明了互联网的用户跟踪并非是过街的老鼠、不能见到阳光的黑色地带。当然,这也和BlueKai严格遵守法规、尊重用户的设置有关,下面会谈到。
BlueKai主要有4个产品:DMP(Data Management Platform)、Data Exchange、Audience x Media Analytics及Mobile DMP。
1、DMP,用来组织第一方数据并且在DMP合作的网站中使用这些数据
2、Data Exchange,通过使用第三方的在线以及离线数据来创建新的可扩展的受众,并且使用这些受众。
- 活跃用户超过3亿
- 前20位的广告网络、门户网站、trading desk中有80%在使用BlueKai的数据
- BlueKai的创建了超过30000种数据属性,为品牌宣传和营销计划服务
3、Audience x Media Analytics,通过分析受众和媒体的数据,帮助营销人员更放心的制定市场计划、定向用户、优化活动、购买媒体。
4、Mobile DMP,顾名思义,为移动端的DMP产品
从介绍来看,这4个产品主要的特点是:
1、DMP
- 收集整合线上线下的数据(用户的自有数据)
- 对数据进行划分(可以针对不同的营销活动,如展示、搜索、视频、社交广告等)
- 将数据用于投放(可投放到不同的广告网络和交换平台)
- 衡量投放效果(可视化),不断进行优化
2、Data Exchange
关于数据提供方以及数据类型可以见附件的说明。
3、Audience x Media Analytics
- 根据现有用户,通过人口统计、地域、兴趣及市场属性等方法找到与现有用户有相似属性的用户
- 基于已知的第一方数据,优化用户和媒体的组合
4、Mobile DMP
是一个全面的、基于云计算的平台,能够管理第一方和第三方移动数据,并且对受众数据进行深度分析。
通过以上产品,BlueKai为营销人员、媒体、代理公司以及数据提供商提供服务。BlueKai也通过提供这些服务赚取利润。
能够公开进行数据买卖,和美国法律完善有关,也与BuleKai的数据使用对用户透明有关。
1、用户随时可以选择opt-out。
2、明示遵守了那些法律法规。
3、明确了收集与不收集哪些数据。
What we MAY KNOW about you | What we DON’T KNOW about you |
>Age Range >Gender >Marital Status >Military Status >Language you speak >Education level >Occupation >Age range, gender and approximate number of >children in your household >Health and Wellness information (if you express an interest in yoga, or healthy living) >Housing information (rent, own, etc.) >Financial information (if you have a mortgage, pay your bills online, looking for a car loan, etc. | >No personally identifiable info (PII)
>Credit card numbers |
4、BlueKai允许使用者看到自己的资料是被谁在使用,并且可以将因为使用自己数据获得的收益捐给慈善机构,很有意思。
附:
Data Exchange中的数据类型及提供方:(http://www.bluekai.com/bluekai-exchange.php)
Data Type | Description | Source | Availability | Qualification | Segmentation |
---|---|---|---|---|---|
Intent | Consumers who intend to buy a particular product or service in the near term. | Exclusive | 160+ million uniques | Actions indicating intent to buy on top tier ecommerce, financial, retail, online travel agency sites. Sample actions include interactions with a search function (either via search widget, or entering in a keyword), product comparison, loan calculators, etc. | Autos (ie. by Make and Model) Financial services (ie. loans, mortgages, investment products) Travel (ie. by departure/destination city, length of stay, air travel, hotel, rental cars and brands) Education (ie. by education products and services) Retail (ie. by product type, categories, brands) Local Goods & Services (ie. by products and services) |
B2B | Business consumers who are occupationally similar. | Exclusively | 12+ million uniques | Occupational attributes sourced from hundreds of business web sites | Company size Functional area Industry Seniority |
Past Purchases | Consumers who are more likely to buy based on pervious purchasing habits | 65+ million uniques | Consistency in online and offline shopping behaviors | By Product Type (e.g. Women’s Apparel, Laptop ) | |
Geo/Demo | Geographically or demographically similar. | TBD | Geo: By State Demo: Age, Education Level, Gender, Homeowner Status, Household Income, Presence of Children | ||
Interest, Lifestyle | Consumers who are more likely to be interested in a topic or fall within a lifestyle category based on modeling from multiple data types | 103+ million uniques | Consistency in online and offline shopping behaviors contrasted with demographic attributes to determine interest, hobbies and lifestyles. | By Product Type (ie Women’s Apparel, Laptop) By Lifestyles (e.g. By Generations (e.g. Gen X, Baby Boomers) By Social (e.g. Social Behavior, Social Signals, Interest between Friends) | |
Branded | Consumers sorted by branded sources of data ranging from geo/demo, lifestyle, interest and purchase propensity | TBD | Contact BlueKai to get a comprehensive list of data providers | Contact BlueKai to learn more about our branded data providers | |
Estimated Financial/Economic | Consumers grouped by their estimated financial characteristics | n/a | Developed from IXI’s proprietary measures. | Examples include Income, Discretionary Spending, Economic Cohorts, Economic Spectrum, Ability to Pay, etc. |
6 thoughts on “了解BlueKai”
mark
谢谢分享
请教一下,运作方式流程是不是这样:
bluekai是把收集到的用户打上标签,然后放在data exchange平台上,比如说其中一个cookie的标签是“对云南旅游感兴趣的人”,而我恰好是一个旅游机构,我作为广告主买了这个cookie,然后当这个user访问某网站页面,该页面有广告位在ad exchange的时候,我就有出价机会了?
还有一点比较疑惑,DMP的数据购买方是否是广告平台,然后由广告平台发起RTB的竞价,还是由广告主直接购买,如果是广告主直接购买了,那么广告主是否还要参与rtb的竞价?
基本是广告主购买,DSP作为技术提供方帮助广告主通过RTB方式购买。
没错,不过你描述的这个流程涉及到了好多角色,这些角色的配合是生态圈良好运转的基础。
请教一个问题,关于bluekai的数据交易,bluekai是如何把其他第三方数据源进行统一标签体系管理的?另外还有一个比较疑惑的地方,之前看资料说,bluekai的数据买卖采用拍卖竞价,这个过程是在线还是离线?像RTB一样么